
Tips
& Tricks

Unique Log Files
I enjoyed Brian Long’s series on file handling and
stream manipulation [Issues 6 to 11, all available on the
Collection ’96 CD-ROM. Editor]. Often applications need
to create a log file and streams can be used for this
purpose. The simple class TLogFile in Listing 1 can be
used to write to a log file: it shows how to get a unique
log file name and how to write new lines to this file. An
example is included of how this class might be used.

Contributed by Tom Corcoran, tomc@unitime.com

Validating Bitmaps
Do you ever allow a user to load bitmaps at run-time?
If so, the routine in Listing 2 should be useful for
validation purposes.

Contributed by Tom Corcoran, tomc@unitime.com

Closed DOS Box
When you run a DOS program in Windows 95, its
window remains open until closed by the user. To run

a DOS program that closes its window after running,
you must specify command.com /c program in the com-
mand line. Using the WinExec API function to run a
program named progdos.exe, the call should be:

WinExec(“command.com /c progdos.exe”,
 sw_ShowNormal);

If you wish that the program is run hidden from the
user, the second parameter must be sw_Hide. You must

unit LogStrm;
interface
uses SysUtils, Classes, Forms;
type
 TLogFile = class
 private
 logFileName: string;
 stream: TFileStream;
 function GetLogFileName: string;
 public
 constructor Create;
 destructor Destroy;
 procedure WriteToStream(strToWrite: string;
 blankLine: boolean);
 end;
implementation
constructor TLogFile.Create;
begin
 logFileName := GetLogFileName;
 stream := TFileStream.Create(logFileName, fmCreate);
end;
destructor TLogFile.Destroy;
begin
 stream.Free;
end;
procedure TLogFile.WriteToStream(strToWrite: string;
 blankLine: boolean);
var
 strNew: string;
 lengthStrNew: byte absolute strNew;
begin
 { #13 = carriage return #10 = form feed }
 strNew := Format(’%s%s’, [strToWrite, #13#10]);
 if blankLine then
 strNew := Format(’%s%s’, [strNew, #13#10]);
 stream.Write(strNew[1], lengthStrNew);
end;
function TLogFile.GetLogFileName: string;
const logFileName = ’log’;

var
 i: integer;
 logFileNoExt: string;
begin
 logFileNoExt := Concat(ExtractFilePath(
 Application.ExeName), logFileName);
 i := 1;
 repeat
 Result := Format(’%s%d.txt’, [logFileNoExt, i]);
 Inc(i);
 until not FileExists(Result);
end;
end.

{ example of using TLogFile }
procedure WriteToLogFile;
const testDir = ’test’;
var dirToMake: string;
begin
 with TLogFile.Create do
 try
 WriteToStream(Format(’Log begun at %s’,
 [DateTimeToStr(Now)]), True);
 dirToMake := Concat(ExtractFilePath(
 Application.ExeName), testDir);
 if not DirectoryExists(dirToMake) then begin
 MkDir(dirToMake);
 if IOResult = 0 then
 WriteToStream(Format(’Made dir %s’,
 [dirToMake]), False)
 else
 WriteToStream(Format(’Unable to make dir %s’,
 [dirToMake]), False);
 end else
 WriteToStream(Format(’Directory %s already exists’,
 [dirToMake]), False);
 finally
 Destroy;
 end;
end;

➤ Listing 1

function ValidateBMP(bmpToChk: string; showMsg: boolean):
 boolean;
{ returns False if invalid BMP or if file doesn’t exist }
var bmp: TBitMap;
 function LoadBmp(bmp: TBitmap; nameOfFile: string):
 boolean; { returns False if problem loading bmp }
 begin
 Result := True;
 try
 bmp.LoadFromFile(nameOfFile);
 except
 on EInvalidGraphic do begin
 if showMsg then
 MessageDlg(Format(
 ’Bitmap: %s is an invalid image’,
 [nameOfFile]), mtError, [mbOk], 0);
 Result := False;
 end;
 end;
 end;
begin
 if bmpToChk = ’’ then
 Result := False
 else begin
 Result := FileExists(bmpToChk);
 if Result then begin
 bmp := TBitMap.Create;
 try
 Result := LoadBmp(bmp, bmpToChk);
 finally
 bmp.Free;
 end;
 end;
 end;
end;

➤ Listing 2

58 The Delphi Magazine Issue 22

use the .com extension in command.com or the program
will not run.

Contributed by Bruno Sonnino, Sao Paolo, Brazil,
bsonnino@geocities.com (for more Tips from Bruno
visit http://www.geocities.com/SiliconValley/8055)

Design Time Context Sensitive Help
For component developers, C++Builder introduced a
new way of incorporating design-time context-sensitive
help. With Delphi 3, Borland have done it again: yet
another novel approach.

The vital details are buried deep in the Delphi 3 help
system. The easiest way to find them is to do a help
index search for help files, select the Providing Help for
your component topic, then click the >> button on the
help screen twice. Here you will learn about the all-new
“A” footnote type and how to go about incorporating
your enhanced help file into Delphi 3. But the following
useful details were not included:
➣ The list of keywords for each topic don’t have to be

in the order shown. This is good, because help
creation tools like Forehelp will usually sort them
alphabetically.

➣ The CNT file is not mandatory: you don’t need to
supply one unless you want to.

➣ Above all, after installing your help file and editing
Delphi3.CFG, a user installing your component must
delete the (hidden) DELPHI3.GID file so that it will
be recreated, including your help file’s information,
next time Delphi 3’s help is used.

Any bets for how JBuilder will do it?

Contributed by Peter Hyde, peter@spis.co.nz

Working With Notebook Pages
Back in May 1996 (Issue 9) I wrote about how to convert
strings to an enumerated type so that they could be
used as (for instance) case statement selectors. One
application of this that I’ve used repeatedly in my work
is to simplify the code for working with TabSet and
TabbedNotebook components. A similar technique
should also work with the Win32 TabControl and
PageControl components.

The trick is to create an enumerated type that
matches the tabs/pages of the control in question (I
just pulled some likely tab titles out of the air here,
adding the nt prefix just makes them look associated
and is not strictly necessary):

type
 TNotebookTabs = (ntInit, ntSettings,
 ntGeneral, ntMiscellaneous);

Then, I use a little utility function that converts a note-
book page index into the enumerated type (Listing 3).
Now, in the OnChange or other event handlers you can
do something like Listing 4.

The advantages of this technique became very ap-
parent to me when I was working on a project wherein
the main interface was a large tabbed notebook. On

several occasions the client asked for the pages to be
rearranged or new pages to be inserted. Until I started
using this technique, each such change required some
tedious and error prone re-structuring of the case state-
ments to keep the correct processing associated with
each page index. Using this technique, the processing
is logically associated with the page title rather than a
“magic number” index, so rearrangements or inser-
tions have no effect on what’s already there. The only
requirement is that if a page is added or removed or a
page name changes, you have to modify the enumer-
ated type and the case references accordingly. I also
think this approach makes the code eminently more
readable with regard to what page is being operated
upon.

Contributed by Stephen Posey,
slposey@concentric.net

QuickReports Band Layout
The version of QuickReports that comes with Delphi 2
is minimally documented, but more than powerful
enough for most reporting requirements. I learned this
and the following tips during development of a report
intensive application recently.

Inserting new bands into a report usually results in
stacked up bands that are almost impossible to untan-
gle. The trick is to set the Align property to None for
each band below where you want to insert, and before
inserting move each band down out of the way so there
is enough space for the new band to drop in. You don’t
really need to go back and reset the Align of each QRBand
to Top, since the component will process the bands in
order anyway. In other words, if your form shows grey
space between each QRBand, that space will not show up
in your final report.

Contributed by Brandon Smith, synature@aol.com

function Tform1.GetNotebookPage(Index : integer):
 TNotebookTabs;
var S: string;
begin
 S := ’nt’ + TabbedNotebook1.Pages[Index];
 Result := TNotebookTabs(GetEnumValue(
 TypeInfo(TNotebookTabs), S));
end;

➤ Listing 3

procedure TForm1.TabbedNotebook1Change(Sender: TObject;
 NewTab: Integer; var AllowChange: Boolean);
var CurrentTab, NextTab: TNotebookTabs;
begin
 CurrentTab := GetNotebookPage(TabbedNotebook1.PageIndex);
 NextTab := GetNotebookPage(NewTab);
 case CurrentTab of
 ntInit : { Init page specific processing }
 ntSettings : { Settings page specific processing }
 ntGeneral : { General page specific processing }
 ntMiscellaneous : { Miscellaneous... }
 end { case CurrentTab };
 case NextTab of
 ntInit : { Init page specific processing }
 { I think you get the idea... }
 end { case NextTab };
end;

➤ Listing 4

60 The Delphi Magazine Issue 22

QuickReports Multiple Detail Fields
In one of my reports, I needed to have items from two
detail tables listed side by side in the same band. In
order to accomplish this I needed a TQRGroup and a
TQRDetailLink. I put an rbSubDetail band on the report
where the data would go and an rbGroupFooter band
under it. Without going through the long trial and error
process, the next steps were to set the PrintBand vari-
able False in the rbSubDetail band’s BeforePrint han-
dler so it never showed. In one of the detail (ie linked
to the master table) band’s QRDBText component’s
BeforePrint handler, I gathered the data I wanted and
put it into TQRMemo components I’d placed in the
rbGroupFooter band. Here’s a fragment from that
gathering operation:

with dm.wttMeds, QRM_Dose.lines do begin
 clear;
 first;
 while not eof do begin
 add(fieldbyname(’DOSE’).asString);
 next;
 end;
end;

Finally, in the rbFooter band’s BeforePrint handler, I
sized and placed the QRMemos.

Contributed by Brandon Smith, synature@aol.com

QuickReports Sizing And Placement
In many reports, especially form type reports, it is
difficult to determine ahead of time how much space to
lay out for each data-aware field. For example, suppose
we have first and last names as separate fields of 27
characters each. Do we want this line on our report:
Name: John Smith

Or would we rather see:
Name: John Smith

To obtain the latter, I use lines of code like the following
to eliminate the extra spaces. Place this kind of code in
the appropriate QRBand.BeforePrint event.

i := canvas.textwidth(’xx’);
QRT_Fname.left := QRL_Fname.left +
 QRL_Fname.width + i;
QRT_Lname.left := QRT_Fname.left +
 QRT_Fname.width + i;

Sizing a TQRmemo is also reasonably easy. Suppose I want
to fill a TQMemo from a TStringList I’ve gotten from
somewhere else. This code fragment adjusts the height
of the QRM_reason so that all the lines in the StringList
slreason are showing:

if slreason.count > 0 then begin
 QRM_reason.lines.assign(slreason);
 i := canvas.textheight(’Z’);
 QRM_reason.height := QRM_reason.lines.count * i;
end;
slReason.free;

But suppose we’ve allowed the user to do something
radical, such as select his or her font of choice for
printing the report.

Control over the location of items on a QuickReport
depends on the QPrinter’s Canvas. QPrinter is an object
QuickReport instantiates as a result of a call to the
Prepare, Preview or Print method. So, in order to find
out how many pixels wide the Canvas is on which one is
placing memos whose size is not known until run time,
one has to either prepare or preview the report first. I
use the following code to find out how much width I’ve
got to play with:

with QuickReport1 do begin
 DM.SetToASingleRecord;
 showProgress := false;
 prepare;
 ActualImageWidth := pageWidth;
 QRPrinter.cleanup;
end;

The size of the font is also problematic and I’m not
going to offer this as the best way to discover it, only
that it appears to work. The handler and its nested
procedure shown in Listing 5 also illustrate runtime
placement and spacing of (TQMemo) elements in the
report. PszFromPstrNew is a function that creates a pchar
from a traditional Pascal string and MaxOf simply
returns the larger of two numbers.

Contributed by Brandon Smith, synature@aol.com

procedure TQR_DocVis.QRB_prnBeforePrint(
 var PrintBand: Boolean);
var lineheight, spacer : integer;
 procedure SetMemoSize(WhichMemo : TQRMemo;
 heading : string);
 var
 i, tmpwidth : integer;
 textSize : tSize;
 dc, thisfont: THandle; {a dc handle}
 tmpPchar : pchar;
 begin
 with WhichMemo do begin
 dc := GetDC(handle); {Get the Dc for the memo}
 thisFont := SelectObject(dc, Font.handle);
 height := (lineheight * lines.count) + 5;
 {make sure the column heading sets the minimum width
 we’re going to use for this memo}
 tmpPchar := pszFromPstrNew(heading+medSpaceStr);
 GetTextExtentPoint32(dc, tmpPchar,
 length(heading+medSpaceStr), textSize);
 tmpWidth := textsize.cx;
 StrDispose(tmpPchar);
 for i := 0 to lines.count - 1 do begin
 tmpPchar := pszFromPstrNew(lines[i]+medSpaceStr);
 GetTextExtentPoint32(dc, tmpPchar,
 length(lines[i])+length(medSpaceStr), textSize);
 tmpwidth := maxof(tmpwidth, textsize.cx);
 strDispose(tmpPchar);
 end;
 width := tmpwidth;
 ReleaseDC(handle, dc); {Release the Dc}
 end;
 end;
begin
 lineheight := QRPrinter.canvas.textheight(’X’);
 {medSpaceStr is set by user and saved in ini file}
 spacer := QRPrinter.canvas.textwidth(medSpaceStr);
 { set size of the memo boxes, in this case there were 5 }
 SetMemoSize(QRM_med,QRL_med.caption);
 { make sure left to right orientation is OK, no overlap}
 QRM_Dose.left := QRM_med.left + QRM_med.width;
 ... add other adjustments as needed ...
end;

➤ Listing 5

62 The Delphi Magazine Issue 22

	Unique Log Files
	Validating Bitmaps
	Closed DOS Box
	Design Time Context Sensitive Help
	Working With Notebook Pages
	QuickReports Band Layout
	QuickReports Multiple Detail Fields
	QuickReports Sizing And Placement

